P — 16-0, 17-1, 18-2, 19-3, 20-4, 21-5, 22-6, 23-7, 24-8, 25-9, 26-10, ... And so on.
Q — 17-0, 18-1, 19-2, 20-3, 21-4, 22-5, 23-6, 24-7, 25-8, 26-9, 27-10, ... And so on.
R — 18-0, 19-1, 20-2, 21-3, 22-4, 23-5, 24-6, 25-7, 26-8, 27-9, 28-10, ... And so on.
S — 19-0, 20-1, 21-2, 22-3, 23-4, 24-5, 25-6, 26-7, 27-8, 28-9,29-10, ... And so on.
T — 20-0, 21-1, 22-2, 23-3, 24-4, 25-5, 26-6, 27-7, 28-8, 29-9, 30-10, ... And so on.
U — 21-0, 22-1, 23-2, 24-3, 25-4, 26-5, 27-6, 28-7, 29-8, 30-9, 31-10, ... And so on.
V — 22-0, 23-1, 24-2, 25+3, 26-4, 27-5, 28-6, 29-7, 30-8, 31-9, 32-10, ... And so on.
W — 23-0, 24-1, 25-2, 26-3, 27-4, 28-5, 29-6, 30-7, 31-8, 32-9, 33-10, ... And so on.
X — 24-0, 25-1, 26-2, 27-3, 28-4, 29-5, 30-6, 31-7, 32-8, 33-9, 34-10, ... And so on
Y — 25-0, 26-1, 27-2, 28-3, 29-4, 30-5, 31-6, 32-7, 33-8, 34-9, 35-10, ... And so on.
Z — 26-0, 27-1, 28-2, 29-3, 30-4, 31-5, 32-6, 33-7, 34-8, 35-9, 36-10, ... And so on.
ᎬXᎪᎷᏢᏞᎬ(Ꮪ);
ᴍᴅᴀs ᴄᴏᴅᴇ:
1×1=14÷1=3+4=10-5=3×4=36÷4=2+1=4-3
SOLUTION:
1×1 ➡️ 1 ➡️ A
14÷1 ➡️ 14 ➡️ N
3+4 ➡️ 7 ➡️ G
10-5 ➡️ 5 ➡️ E
3×4 ➡️ 12 ➡️ L
36÷4 ➡️ 9 ➡️ I
2+1 ➡️ 3 ➡️ C
4-3 ➡️ 1 ➡️ A
»ANGELICA«
ᴍᴜʟᴛɪᴘʟɪᴄᴀᴛɪᴏɴ ᴄᴏᴅᴇ:
2×5=3×5=2×7=1×5=19×1
SOLUTION:
2×5 ➡️ 10 ➡️ J
3×5 ➡️ 15 ➡️ O
2×7 ➡️ 14 ➡️ N
1×5 ➡️ 5 ➡️ E
19×1 ➡️ 19 ➡️ S
»JONES«
ᴅɪᴠɪsɪᴏɴ ᴄᴏᴅᴇ:
26÷2=45÷3=90÷5=2÷2=42÷3=200÷10=25÷5
SOLUTION:
26÷2 ➡ ️13 ➡ ️M
45÷3 ➡️ 15 ➡️ O
90÷5 ➡️ 18 ➡️ R
2÷2 ➡️ 1 ➡️ A
42÷3 ➡️ 14 ➡️ N
200÷10 ➡️ 20 ➡️ T
25÷5 ➡️ 5 ➡️ E
»MORANTE«
ᴀᴅᴅɪᴛɪᴏɴ ᴄᴏᴅᴇ:
0+1=7+7=18+2=6+9=12+13=1+0
SOLUTION:
0+1 ➡️ 1 ➡️ A
7+7 ➡️ 14 ➡️ N
18+2 ➡️ 20 ➡️ T
6+9 ➡️ 15 ➡️ O
12+13 ➡️ 25 ➡️Y
1+0 ➡️ 1 ➡️ A
»ANTOYA«
sᴜʙᴛʀᴀᴄᴛɪᴏɴ ᴄᴏᴅᴇ:
26-13=20-15=30-12=8-5=2-1=16-12=100-95=20-10=10-9=39-20
SOLUTION:
26-13 ➡ ️13 ➡️ M
20-15 ➡️ 5 ➡️ E
30-12 ➡️ 18 ➡️ R
8-5 ➡️ 3 ➡️ C
2-1 ➡️ 1 ➡️ A
16-12 ➡️ 4 ➡️ D
100-95 ➡️ 5 ➡️ E
20-10 ➡️ 10 ➡️ J
10-9 ➡️ 1 ➡️ A
39-20 ➡️ 19 ➡️ S
»MERCADEJAS«
•NᎾᎢᎬ
✔️ Binomial/two terms. Ex; 2+3=1+7=6+7
✖️ Trinomial/three terms, four terms and so on. Ex; 2+1+3+7=4-6+7=5×6-7
✔️ Whole numbers and zero(0). Ex; 2, 5, 0, 100
✖️ Decimals, Fractions and Negative integers. Ex; 1.456, ¼, -10
‣ Sa “Multiplication” at “Addition” yung nasa guide lang talaga ang pwedeng gamitin, but pwede rin magaka-inter change ang dalawang term.
Example;
2+1 can be 1+2
3×4 can be 4×3
‣ Sa “Division” at “Subtraction” naman, maraming numbers ang pedeng gamitin kaya linagyan ko na lang ng 'and so on' (basta ang dalawang gagamiting numbers na kapag in-apply na ang operation na gagamitin ay equal sa value ng letter na iyong dinidecode). Dito naman ang dalawang term ay hindi pwedeng magka-inter change dahil mag-iiba ang resulta, magiging negative/decimal na.
Example;
4÷2 can't be 2÷4 [kasi magiging fraction/decimal na (½ or 0.5) kapag 2÷4 ang gagamitin.]
5-2 can't be 2-5 [kasi magiging negative na (-3) kapag 2-5 ang gagamitin.]
This Code is Invented by: Jo N ES
YOU ARE READING
DECIPHER: A Compilation of codes and ciphers
Random✘ - - - DECIPHER is a book compilation that tackles different, new and old codes/ciphers. In addition, this book begins with the definition of cryptography along with it's different terminology for begginers, and better understanding. Interested? W...
DECIPHER 56 : MDAS CODE
Start from the beginning
