Using functions we can structure our programs in a more modular way, accessing all the potential that structured programming can offer to us in C++.
A function is a group of statements that is executed when it is called from some point of the program. The following is its format:
type name ( parameter1, parameter2, ...) { statements }
where:
* type is the data type specifier of the data returned by the function.
* name is the identifier by which it will be possible to call the function.
* parameters (as many as needed): Each parameter consists of a data type specifier followed by an identifier, like any regular variable declaration (for example: int x) and which acts within the function as a regular local variable. They allow to pass arguments to the function when it is called. The different parameters are separated by commas.
* statements is the function's body. It is a block of statements surrounded by braces { }.
Here you have the first function example:
// function example
#include <iostream>
using namespace std;
int addition (int a, int b)
{
r=a+b;
return (r);
}
int main ()
{
int z;
z = addition (5,3);
cout << "The result is " << z;
return 0;
}
The result is 8
In order to examine this code, first of all remember something said at the beginning of this tutorial: a C++ program always begins its execution by the main function. So we will begin there.
We can see how the main function begins by declaring the variable z of type int. Right after that, we see a call to a function called addition. Paying attention we will be able to see the similarity between the structure of the call to the function and the declaration of the function itself some code lines above:
The parameters and arguments have a clear correspondence. Within the main function we called to addition passing two values: 5 and 3, that correspond to the int a and int b parameters declared for function addition.
At the point at which the function is called from within main, the control is lost by main and passed to function addition. The value of both arguments passed in the call (5 and 3) are copied to the local variables int a and int b within the function.
Function addition declares another local variable (int r), and by means of the expression r=a+b, it assigns to r the result of a plus b. Because the actual parameters passed for a and b are 5 and 3 respectively, the result is 8.
The following line of code:
return (r);
finalizes function addition, and returns the control back to the function that called it in the first place (in this case, main). At this moment the program follows it regular course from the same point at which it was interrupted by the call to addition. But additionally, because the return statement in function addition specified a value: the content of variable r (return (r);), which at that moment had a value of 8. This value becomes the value of evaluating the function call.
