Lua implements an incremental mark-and-sweep collector. It uses two numbers to control its garbage-collection cycles: the garbage-collector pause and the garbage-collector step multiplier. Both use percentage points as units (so that a value of 100 means an internal value of 1).

The garbage-collector pause controls how long the collector waits before starting a new cycle. Larger values make the collector less aggressive. Values smaller than 100 mean the collector will not wait to start a new cycle. A value of 200 means that the collector waits for the total memory in use to double before starting a new cycle.

The step multiplier controls the relative speed of the collector relative to memory allocation. Larger values make the collector more aggressive but also increase the size of each incremental step. Values smaller than 100 make the collector too slow and can result in the collector never finishing a cycle. The default, 200, means that the collector runs at "twice" the speed of memory allocation.

You can change these numbers by calling lua_gc in C or collectgarbage in Lua. With these functions you can also control the collector directly (e.g., stop and restart it).

2.10.1 - Garbage-Collection Metamethods

Using the C API, you can set garbage-collector metamethods for userdata (see §2.8). These metamethods are also called finalizers. Finalizers allow you to coordinate Lua's garbage collection with external resource management (such as closing files, network or database connections, or freeing your own memory).

Garbage userdata with a field __gc in their metatables are not collected immediately by the garbage collector. Instead, Lua puts them in a list. After the collection, Lua does the equivalent of the following function for each userdata in that list:

function gc_event (udata)

local h = metatable(udata).__gc

if h then

h(udata)

end

end

At the end of each garbage-collection cycle, the finalizers for userdata are called in reverse order of their creation, among those collected in that cycle. That is, the first finalizer to be called is the one associated with the userdata created last in the program. The userdata itself is freed only in the next garbage-collection cycle.

2.10.2 - Weak Tables

A weak table is a table whose elements are weak references. A weak reference is ignored by the garbage collector. In other words, if the only references to an object are weak references, then the garbage collector will collect this object.

A weak table can have weak keys, weak values, or both. A table with weak keys allows the collection of its keys, but prevents the collection of its values. A table with both weak keys and weak values allows the collection of both keys and values. In any case, if either the key or the value is collected, the whole pair is removed from the table. The weakness of a table is controlled by the __mode field of its metatable. If the __mode field is a string containing the character 'k', the keys in the table are weak. If __mode contains 'v', the values in the table are weak.

After you use a table as a metatable, you should not change the value of its __mode field. Otherwise, the weak behavior of the tables controlled by this metatable is undefined.

2.11 - Coroutines

Lua supports coroutines, also called collaborative multithreading. A coroutine in Lua represents an independent thread of execution. Unlike threads in multithread systems, however, a coroutine only suspends its execution by explicitly calling a yield function.

You create a coroutine with a call to coroutine.create. Its sole argument is a function that is the main function of the coroutine. The create function only creates a new coroutine and returns a handle to it (an object of type thread); it does not start the coroutine execution.

When you first call coroutine.resume, passing as its first argument a thread returned by coroutine.create, the coroutine starts its execution, at the first line of its main function. Extra arguments passed to coroutine.resume are passed on to the coroutine main function. After the coroutine starts running, it runs until it terminates or yields.

A coroutine can terminate its execution in two ways: normally, when its main function returns (explicitly or implicitly, after the last instruction); and abnormally, if there is an unprotected error. In the first case, coroutine.resume returns true, plus any values returned by the coroutine main function. In case of errors, coroutine.resume returns false plus an error message.

A coroutine yields by calling coroutine.yield. When a coroutine yields, the corresponding coroutine.resume returns immediately, even if the yield happens inside nested function calls (that is, not in the main function, but in a function directly or indirectly called by the main function). In the case of a yield, coroutine.resume also returns true, plus any values passed to coroutine.yield. The next time you resume the same coroutine, it continues its execution from the point where it yielded, with the call to coroutine.yield returning any extra arguments passed to coroutine.resume.

Like coroutine.create, the coroutine.wrap function also creates a coroutine, but instead of returning the coroutine itself, it returns a function that, when called, resumes the coroutine. Any arguments passed to this function go as extra arguments to coroutine.resume. coroutine.wrap returns all the values returned by coroutine.resume, except the first one (the boolean error code). Unlike coroutine.resume, coroutine.wrap does not catch errors; any error is propagated to the caller.

As an example, consider the following code:

function foo (a)

print("foo", a)

return coroutine.yield(2*a)

end

co = coroutine.create(function (a,b)

print("co-body", a, b)

local r = foo(a+1)

print("co-body", r)

local r, s = coroutine.yield(a+b, a-b)

print("co-body", r, s)

return b, "end"

end)

print("main", coroutine.resume(co, 1, 10))

print("main", coroutine.resume(co, "r"))

print("main", coroutine.resume(co, "x", "y"))

print("main", coroutine.resume(co, "x", "y"))

When you run it, it produces the following output:

co-body 1 10

foo 2

main true 4

co-body r

main true 11 -9

co-body x y

main true 10 end

main false cannot resume dead coroutine

Lua coding guideWhere stories live. Discover now